Ventromedial hypothalamic expression of Bdnf is required to establish normal patterns of afferent GABAergic connectivity and responses to hypoglycemia
نویسندگان
چکیده
OBJECTIVE The ventromedial nucleus of the hypothalamus (VMH) controls energy and glucose homeostasis through direct connections to a distributed network of nuclei in the hypothalamus, midbrain, and hindbrain. Structural changes in VMH circuit morphology have the potential to alter VMH function throughout life, however, molecular signals responsible for specifying its neural connections are not fully defined. The VMH contains a high density of neurons that express brain-derived neurotrophic factor (BDNF), a potent neurodevelopmental effector known to regulate neuronal survival, growth, differentiation, and connectivity in a number of neural systems. In the current study, we examined whether BDNF impacts the afferent and efferent connections of the VMH, as well as energy homeostatic function. METHODS To determine if BDNF is required for VMH circuit formation, a transgenic mouse model was used to conditionally delete Bdnf from steroidogenic factor 1 (SF1) expressing neurons of the VMH prior to the onset of establishing neural connections with other regions. Projections of SF1 expressing neurons were visualized with a genetically targeted fluorescent label and immunofluorescence was used to measure the density of afferents to SF1 neurons in the absence of BDNF. Physiological changes in body weight and circulating blood glucose were also evaluated in the mutant mice. RESULTS Our findings suggest that BDNF is required to establish normal densities of GABAergic afferents onto SF1 neurons located in the ventrolateral part of the VMH. Furthermore, loss of BDNF from VMH SF1 neurons results in impaired physiological responses to insulin-induced hypoglycemia. CONCLUSION The results of this study indicate that BDNF is required for formation and/or maintenance of inhibitory inputs to SF1 neurons, with enduring effects on glycemic control.
منابع مشابه
Glucose prevents the fall in ventromedial hypothalamic GABA that is required for full activation of glucose counterregulatory responses during hypoglycemia.
Local delivery of glucose into a critical glucose-sensing region within the brain, the ventromedial hypothalamus (VMH), can suppress glucose counterregulatory responses to systemic hypoglycemia. Here, we investigated whether this suppression was accomplished through changes in GABA output in the VMH. Sprague-Dawley rats had catheters and guide cannulas implanted. Eight to ten days later, microd...
متن کاملBlockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia.
Hypoglycemia provokes a multifaceted counterregulatory response involving the sympathoadrenal system, stimulation of glucagon secretion, and the hypothalamo-pituitary-adrenal axis that is commonly impaired in diabetes. We examined whether modulation of inhibitory input from gamma-aminobutyric acid (GABA) in the ventromedial hypothalamus (VMH), a major glucose-sensing region within the brain, pl...
متن کاملLactate-Induced Release of GABA in the Ventromedial Hypothalamus Contributes to Counterregulatory Failure in Recurrent Hypoglycemia and Diabetes
Suppression of GABAergic neurotransmission in the ventromedial hypothalamus (VMH) is crucial for full activation of counterregulatory responses to hypoglycemia, and increased γ-aminobutyric acid (GABA) output contributes to counterregulatory failure in recurrently hypoglycemic (RH) and diabetic rats. The goal of this study was to establish whether lactate contributes to raising VMH GABA levels ...
متن کاملActivation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats.
The mechanism(s) by which glucosensing neurons detect fluctuations in glucose remains largely unknown. In the pancreatic beta-cell, ATP-sensitive K+ channels (K ATP channels) play a key role in glucosensing by providing a link between neuronal metabolism and membrane potential. The present study was designed to determine in vivo whether the pharmacological opening of ventromedial hypothalamic K...
متن کاملIncreased GABAergic Output in the Ventromedial Hypothalamus Contributes to Impaired Hypoglycemic Counterregulation in Diabetic Rats
OBJECTIVE Impaired glucose counterregulation during hypoglycemia is well documented in patients with type 1 diabetes; however, the molecular mechanisms underlying this defect remain uncertain. We reported that the inhibitory neurotransmitter γ-aminobutyric acid (GABA), in a crucial glucose-sensing region within the brain, the ventromedial hypothalamus (VMH), plays an important role in modulatin...
متن کامل